Director and Professor
Phone: (406) 454-6001
Email Mike Kavanaugh
Laboratory Members
Postdoctoral Fellows
Alicia Angell
Andrea Panter, DVM
Graduate Student
Denis Shchepakin
Administrative/Senior Research Assistant
Jill O’Moore
Senior Research Assistant
Rose Pitstick
Derek Silvius
Education
Washington University, AB, Biology, 1982
Oregon Health Sciences University, PhD, Biochemistry, 1987
Positions
1987-1993 | Postdoctoral Fellow, Vollum Institute, Oregon Health Sciences University |
1993-1997 | Assistant Professor, Vollum Institute |
1997-2003 | Associate Professor, Vollum Institute |
2000-2003 | Associate Director, Oregon Health Science University Neuroscience Graduate Program |
2003-Present | Professor, Dept. of Biomed. Pharm. Sciences, University of Montana |
2006-Present | Scientific Director, Transynaptic Technologies, LLC |
2008-2017 | Director, Center for Structural and Functional Neuroscience |
2017-Present | Director, McLaughlin Research Institute |
Research Summary
Research in the Kavanaugh laboratory focuses on the roles of transporters, receptors, and ion channels in the brain. The work integrates electrophysiological, molecular, and behavioral approaches. The overarching goal of the lab is to understand the structure, function, and biophysical properties of these membrane proteins in order to link molecular properties to cellular and circuit level functions.
In the brain, neurons communication by synaptic transmission, which occurs when neurotransmitter is released into the synaptic cleft between two neurons. Glutamate is the major excitatory neurotransmitter in the brain, and when it binds to postsynaptic receptors it activates electrical signals leading to processes ranging from perception to learning and memory. Following activation of postsynaptic receptors, neurotransmitter is cleared away by selective transporters which terminate signaling.
Research in Kavanaugh’s lab has helped establish principles for how the transporters for glutamate and other neurotransmitters work, and how they cooperate with ion channels to regulate synaptic signaling in both normal and disease processes. In collaboration with synthetic chemists, the team is also developing and testing new drugs that target transporters for therapeutic and diagnostic applications.
Selected Publications
Selected Publications (h-index=52; full list at https://scholar.google.com/citations?hl=en&user=L1pjMM0AAAAJ)
Foster, A.C., Farnsworth, J., Lind, G.E., Li, Y-X., Yang, J., Dang, V., Penjwini, M., Viswanath, V., Staubli, U., Kavanaugh, M.P. (2016) D-Serine is a substrate for neutral amino acid transporters ASCT1 and ASCT2, and is transported by both sub-types in rat hippocampal astrocyte cultures. PLoS ONE (in press)
Sun W., Shchepakin D., Kalachev L.V., Kavanaugh M.P. (2014) Glutamate transporter control of ambient glutamate levels. Neurochem Int 73, 146
Calderón-Garcidueñas, L., Franco-Lira, M., Mora-Tiscareño, A., Medina-Cortina, H., Torres-Jardón, R., Kavanaugh, M.P., 2013. Early Alzheimer’s and Parkinson’s disease pathology in urban children. Biomed Res Int 2013, 161687.
Leary GP, Holley DC, Stone EF, Lyda BR, Kalachev LV, Kavanaugh MP (2011) The central cavity in trimeric glutamate transporters restricts ligand diffusion. Proc. Natl. Acad. Sci. U.S.A.108:14980
Sun W, Hoffman KM, Holley DC, Kavanaugh MP (2011) Specificity and actions of an arylaspartate inhibitor of glutamate transport at the Schaffer collateral-CA1 pyramidal cell synapse. PLoS ONE 6:e23765
Otis TS, Kavanaugh MP, Jahr CE (1997) Postsynaptic glutamate transport at the climbing fiber-Purkinje cell synapse. Science 277:1515-1518
Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383:634
Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG (1995) An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375:599-603
The Prion Disease Database (PDDB) is a public database that supports the prion disease research community by collecting, integrating, and presenting data from public sources and collaborating laboratories. The PDDB was originally created by the Institute for Systems Biology and the McLaughlin Research Institute, which have researched prion disease using a systems biology approach.